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Abstract

Cell signaling is a fundamental cellular process that enables cells to sense and

respond to information in their surroundings. At the molecular level, signaling is

primarily carried out by transmembrane protein receptors that can initiate com-

plex downstream signal transduction cascades to alter cellular behavior. In the

human body, different cells can be exposed to a wide variety of environmental

conditions, and cells express diverse classes of receptors capable of sensing and

integrating different signals. Furthermore, different receptors and signaling path-

ways can crosstalk with each other to calibrate the cellular response. Crosstalk

occurs through multiple mechanisms at different levels of signaling pathways. In

this review, we discuss how cells sense and integrate different chemical, mechani-

cal, and spatial signals as well as the mechanisms of crosstalk between pathways.

To illustrate these concepts, we use a few well-studied signaling pathways, includ-

ing receptor tyrosine kinases and integrin receptors. Finally, we discuss the impli-

cations of dysregulated cellular sensing on driving diseases such as cancer.
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1 | INTRODUCTION

All living organisms must be able to sense information in their environment and alter their behavior to adapt to fluctu-
ating environmental conditions. Multicellular animals have an additional challenge—the need to coordinate numerous
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cells across space and time (Bich et al., 2019). Comparative genomics studies between multicellular metazoans and their
unicellular ancestors find that multicellular organisms evolved many distinct membrane receptors and ligands (Sebé-
Pedr�os et al., 2012, 2017). These receptors enable cells to coordinate and communicate information across the organism.
Receiving and transmitting signals allow cells to communicate with and respond to their external environment
(Azeloglu & Iyengar, 2015). Moreover, these signals are abundant and diverse, consisting of chemical, spatial,
and physical information. Therefore, a cell must not only receive these signals but process and interpret them to
respond appropriately to the surrounding environment.

Different receptors confer different signals and, therefore, different functions. Multicellular organisms such as
humans contain hundreds of unique cell types that respond to signals differently from each other (Bianconi
et al., 2013). This is in part due to the unique combination of expressed receptors, allowing for specialized cellular func-
tions in different tissues or organs (Domanskyi et al., 2022; Marti-Solano et al., 2020). While each receptor can provide
individual responses to stimuli, they often coordinate together to integrate multiple signals creating a full picture of the
cellular environment (Azeloglu & Iyengar, 2015). This integration can occur through crosstalk, a commonly studied
phenomenon within the signal transduction field and a focus of this review (Vert & Chory, 2011). When signaling
becomes dysregulated it can lead to the onset of disease and trigger aberrant cellular behaviors (Berridge, 2013; Saraon
et al., 2021; Tartaglia & Gelb, 2010; Q. Wang et al., 2019). As signaling pathways are interconnected, dysregulation of
one component can have cascading effects on several others resulting in disease exacerbation and resistance to targeting
therapies.

In this review, we will discuss fundamental concepts and themes underlying the current understanding of cellular
signaling. We will use a few signaling pathways as examples to illustrate these concepts and discuss common mecha-
nisms by which signaling can be disrupted in human disease. However, the concepts and signal dysregulation discussed
in this review are not limited to our examples and extend across other signaling pathways and diseases.

2 | CELLS SENSE THE EXTERNAL ENVIRONMENT THROUGH SIGNALING
RECEPTORS

The extracellular environment contains many different molecules such as ions, peptides, glycans, growth factors, hor-
mones, and glycoproteins, many of which are released from other cells (Hynes & Naba, 2012). Thus, the extracellular
environment is a dynamic, changing system that enables intercellular communication (Müller & Schier, 2011). Each
cell in the human body is equipped to sense and respond to the diverse signals found in the extracellular space. Broadly,
these signals can be categorized into chemical, spatial, and mechanical information. Chemical signals include secreted
molecules that can diffuse and travel long distances, such as growth factors and hormones (Müller & Schier, 2011).
Chemical signals can transmit information rapidly and enable communication between cells over long distances. Spa-
tial signals like basement membrane molecules enable cells to orient themselves within their environment and provide
the basis for the organization of cells into tissues (Sekiguchi & Yamada, 2018). Mechanical signals include the stiffness
of the environment and the forces generated within tissues, such as the shear force of blood passing through vessels
(Chanet & Martin, 2014). These mechanical signals provide important information about the local microenvironment.

To sense the diverse signals present in the extracellular environment, cells rely on various protein receptors embed-
ded in the plasma membrane. The main types of receptors in human cells include channel-linked receptors, enzyme-
linked receptors, G protein-coupled receptors (GPCRs), and adhesion receptors (Figure 1). Channel-linked receptors
allow ions and other lipid membrane-impermeable molecules to exchange between cells and environment (Li
et al., 2014). Many of these channels, such as gamma-aminobutyric acid Type-A receptor (GABAAR), require binding to
ligands such as neurotransmitters to open or close the channel (Ghit et al., 2021). Enzyme-linked receptors are activated
by an extracellular signal and become enzymatically active primarily by an intracellular kinase domain, phosphatase
domain, or guanylyl cyclase domain (Lemmon & Schlessinger, 2010). GPCRs are seven-pass transmembrane receptors
that act as guanine nucleotide exchange factors (GEFs) to activate and release intracellular G proteins upon ligand
binding (Rosenbaum et al., 2009; Seyedabadi et al., 2022). A single GPCR can activate many G proteins to rapidly
amplify the signal (Ross, 1989). Finally, adhesion receptors physically link the extracellular environment to intracellular
cytoskeletal proteins (Kim et al., 2011). These receptors include cell–cell linking cadherins, cell-matrix coupling
integrins, cell adhesion immunoglobulin-like cell adhesion molecules (Ig CAMs), and sugar-binding selectins com-
monly involved in immune cell arrest from circulation (Harjunpää et al., 2019; Patel et al., 2003). Each of these different
classes of receptors can recognize specific extracellular signals and initiate a specific intracellular response. Moreover,
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sharing of ligand between receptors is common and crosstalk between pathways can lead to complex outputs. Typically,
binding of a receptor to its cognate ligand leads to a conformational change in protein structure. This can have different
effects on the receptor, such as promoting receptor oligomerization, activating a receptor's enzymatic activity, revealing
adaptor protein binding domains, or opening a channel for ion exchange (Figure 1). In turn, this elicits signaling path-
way activation and therefore cellular response. The signaling pathway emanating from a single receptor is often a com-
plex network with intricate layers of regulation resulting in the modification of multiple downstream targets.

Human cells can contain many different receptors (100s–1000s of receptors, depending on the cell type) embedded
within a densely packed plasma membrane (typically �30,000 molecules/micron2) (Jacobson et al., 2007, 2019; Quinn
et al., 1984). The combination of expressed receptors on a cell's surface dictates the specific signals that can be sensed.
There is also overlap between different signaling pathways with common adaptor proteins, enzymes, and downstream
targets shared between different pathways. For instance, humans have 58 receptor tyrosine kinases (RTKs) that can

FIGURE 1 Types of signaling receptors. Channel-linked receptors can sense and transport ions across the membrane (top, left).

Enzyme-linked receptors such as receptor tyrosine kinases can activate the enzymatic domain upon ligand binding (top, right). G protein-

coupled receptors bind to ligands including neurotransmitters, odorants, photons, and hormones triggering activated G protein release and

downstream signaling (bottom, left). Adhesion receptors bind to the extracellular matrix and physically link the outside to the intracellular

cytoskeleton (bottom, right). Created with Biorender.
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elicit unique cell proliferative responses to different ligands despite using overlapping adaptor proteins and downstream
targets (Lemmon & Schlessinger, 2010; Vasudevan et al., 2015). The same receptor can also elicit different cellular
responses depending on the context. For example, activation of epidermal growth factor receptor (EGFR) by different
ligands such as epiregulin or epidermal growth factor (EGF) can result in either differentiation or proliferation
responses, respectively (Freed et al., 2017). Thus, cells must be able to simultaneously sense many different signals and
integrate this information to achieve the appropriate cellular response. Within the context of a cell's complex microen-
vironment, multiple receptors are being activated by multiple ligands leading to simultaneous pathway activation (Kim
et al., 2011). How cells integrate this information remains an exciting area of ongoing research.

Appropriate receptor signaling is critical for healthy cell function. Disease can be triggered when components of sig-
naling pathways become dysregulated by altered expression, mutations, or other mechanisms. The dysregulation of the
same receptor can trigger a diversity of disease presentations depending on the cell type and tissue context. For
instance, downregulation of the RTK hepatocyte growth factor receptor (HGFR) is associated with increased risk of
autism spectrum disorder (D. B. Campbell et al., 2006), while HGFR is hyperactivated in various cancers including non-
small cell lung cancer, papillary renal carcinoma, and other adenocarcinomas (Ma et al., 2005; Schmidt et al., 1997).
Additionally, abnormal receptor function affects distinct organs and tissues differently. Within the respiratory epithelia,
mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ligand-gated ion channel lead to
impaired membrane targeting of the receptor or impaired chloride ion shuttling (Cheng et al., 1990; Riordan
et al., 1989; Yeh et al., 2019). This, in turn, causes water retention within lung epithelial cells leading to mucus build-up
and airway obstruction—hallmark consequences of the genetic disorder cystic fibrosis (Boucher, 2002). Moreover,
CFTR dysfunction is not limited to respiratory tissue but also impacts other tissues and organs such as the intestine,
pancreas, sweat glands, and reproductive system. In the pancreas, CFTR is important for exocrine secretion and its
mutation can lead to impaired secretion of sodium bicarbonate and water in cystic fibrosis patients (Ishiguro
et al., 2009; Lee et al., 2012). In addition to being commonly dysregulated in disease, receptors are also localized on the
surface of the cell and easily accessible to small molecules and antibodies (Imai & Takaoka, 2006; Yin & Flynn, 2016).
Therefore, they are common candidates for pharmacological intervention in human disease.

3 | CHEMICAL COMMUNICATION DELIVERS RAPID INFORMATION

Chemical cues provide a mechanism for rapid signal diffusion between cells and throughout an organism. These cues
include secreted peptides, hormones, neurotransmitters, ions, and growth factors (Müller & Schier, 2011). Cell mem-
branes are embedded with a multitude of protein receptors that recognize specific chemical ligands and initiate an
intracellular response (Jacobson et al., 2019).

One mechanism to couple ligand binding to an intracellular response is via direct interactions between a ligand-
sensing receptor and an intracellular enzymatic molecule. For example, GPCRs have an extracellular domain that rec-
ognizes ions, odorants, photons, hormones, vitamins, or neurotransmitters and an intracellular domain that binds
directly to G proteins, enzymes that cycle between guanosine diphosphate (GDP) and guanosine triphosphate (GTP;
Chen et al., 2022; Hilger et al., 2018). Upon GPCR ligand binding, GDP is exchanged for GTP, and G proteins are
released from the receptor which triggers enzyme activity. GPCRs elicit rapid cellular responses to light, odors, peptides,
and neurotransmitters (Chen et al., 2022; Hilger et al., 2018).

Growth factors are chemical signals that regulate cell proliferation, help maintain tissue homeostasis, and regulate
metabolism. Growth factors can signal in either autocrine (self-released signal), paracrine (neighbor-released signal), or
endocrine (circulation-released signal) methods. Many growth factors bind to RTKs, a family of receptors that typically
contain an extracellular ligand-binding domain and an intracellular kinase domain (Lemmon & Schlessinger, 2010). By
combining ligand binding and enzymatic activity within a single molecule, RTKs can efficiently recognize the extracel-
lular signal and self-activate to transduce the information intracellularly. For instance, EGF is a cleaved and secreted
ligand capable of binding and acting on the RTK EGFR in an autocrine, paracrine, or endocrine fashion. Ligand bind-
ing drives conformational changes to reveal the dimerization arm of the ligand-bound receptor (Garrett et al., 2002).
This drives dimerization of the extracellular domains of two EGFR molecules and leads to subsequent activation of its
intracellular kinase domains (Figure 2). The EGFR family of receptors consists of structurally similar members EGFR/
HER1 (human epidermal growth factor receptor 1), EGFR2 (HER2), EGFR3 (HER3), and EGFR4 (HER4). Some RTKs
lack either ligand-binding or kinase activity. However, these receptors are still capable of robust signaling partly due to
their ability to heterodimerize with other functional RTK family members (Littlefield et al., 2014). For example, HER2,
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a RTK incapable of ligand binding, and HER3, a RTK with weakened kinase activity, can form a signaling-competent
heterodimer (Wallasch et al., 1995). Additionally, EGFR and HER2 have recently been shown to homo- and hetero-
dimerize in the absence of ligands and become activated, but the consequences of this ligand-free activation remain
unclear (Byrne et al., 2020).

3.1 | Adaptor proteins coordinate receptor signaling to different pathways

Activated receptors often bind and recruit other proteins to the membrane to form supramolecular signaling clusters
that can range from nanometers to micrometers in diameter (Jacobson et al., 2019; Mayer & Yu, 2018; Figure 2). Recep-
tor activation can expose binding sites for intracellular proteins through conformational changes or post-translational
modifications. For example, phosphorylation of tyrosine residues within the RTK cytoplasmic domain creates binding
sites for Src homology 2 (SH2) domain-containing proteins (Kaneko et al., 2012). Adaptor, scaffold, and docking

FIGURE 2 EGFR-family receptor signaling at a glance. Upon ligand binding to the extracellular domains, monomeric EGFR dimerizes

with itself or other EGFR-family members including HER2, HER3, and HER4. This initiates kinase activity and autophosphorylation of

tyrosines on the C-terminal tail. Adaptor proteins bind and recruit signal transduction complexes. Activation of PKC through direct binding

of PLCγ (I), the MAPK pathway through Grb2/SOS recruitment (II), the JAK/STAT pathway through direct receptor binding (III), and the

PI3K/AKT pathway through Grb2/Gab1 association (IV) influences gene expression to alter cell survival, proliferation, differentiation, and

cell-cycle progression. Created with Biorender.com.
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proteins interact with activated receptors depending on the compatibility of binding sites available. These recruited
intracellular proteins function together to coordinate the specific activation of downstream pathways and ultimately a
cellular action.

The recruitment and coordination of intracellular proteins are critical for RTK signaling. For example, the clustering
of EGFR results in robust activation of multiple downstream signaling pathways including mitogen-activated protein
kinases (MAPK) and phosphoinositide 3-kinase (PI3K)/Ak strain transforming (Akt) signaling (Egan et al., 1993;
Humtsoe & Kramer, 2010). To coordinate the proper signal transduction pathway, combinations of adaptor proteins
will localize and bind to activated receptors (Bongartz et al., 2019). Different adaptor proteins are responsible for the
activation of MAPK signaling and PI3K/Akt signaling. Growth factor receptor-bound protein 2 (Grb2) binds directly to
the phosphotyrosines on the C-terminal tails of many RTKs, including EGFR. Grb2 then recruits son of sevenless (SOS)
which can activate rat sarcoma virus (Ras) small GTPase at the membrane to trigger the MAPK signaling cascade
(Egan et al., 1993; McCormick, 1993). While both MAPK and PI3K signaling leads to cell growth and survival, their dif-
ferential activation can also promote unique outcomes. This is largely due to the presence and timing of adaptor protein
recruitment (Ronan et al., 2016). Interestingly, different receptors can compete for adaptor protein binding to influence
signaling outcomes. For instance, EGF/EGFR can outcompete ephrin-A1/EphA2 receptors for Grb2 and SOS binding
(Oh et al., 2022). Accordingly, the recruitment of adaptor proteins to different receptors could shift their downstream
effectors and change the cellular response.

3.2 | Ligand properties influence downstream signaling

Single receptors often bind many types of ligand, and the binding of different ligands can elicit unique responses. This
not only allows for receptors to be activated by multiple types of chemicals, but also allows the same receptor machin-
ery to activate different downstream signaling cascades. For example, low-affinity ligand (epiregulin and epigen) bind-
ing to EGFR results in weaker receptor dimerization when compared to high-affinity ligand (EGF; Freed et al., 2017).
As a result, epiregulin and epigen lead to sustained extracellular signal-regulated kinase (Erk) activation whereas EGF
leads to transient Erk activation (Freed et al., 2017). Specific ligand-induced conformations can influence downstream
signaling. EGF and transforming growth factor alpha (TGF-α) both bind EGFR with similar affinities (Jones
et al., 1999). However, EGF and TGF-α create different extracellular dimer conformations which propagate distinct
intracellular kinase activities with each bound ligand (Y. Huang et al., 2021). Moreover, ligands can bias the formation
of specific heterodimer combinations (Macdonald-Obermann & Pike, 2014). For example, betacellulin binding influ-
ences EGFR to preferentially form heterodimers with HER3 (Rush et al., 2018). Finally, ligand concentration can mod-
ulate the receptor response and endocytosis. Low EGF stimulation increases EGFR recycling while high EGF directs
EGFR toward degradation (Sigismund et al., 2008). Thus, the identity, affinity, and concentration of available ligands
influences downstream signaling.

Different ligands can also preferentially activate one signaling response over another downstream of a receptor, a
phenomenon termed biased agonism or functional selectivity (Wootten et al., 2018). Biased agonism can occur when
ligands preferentially stabilize different conformational states of the same receptor, leading to distinct cellular
responses. Identifying biased agonists for different receptors, especially GPCRs, is ongoing in the signaling and drug dis-
covery fields (Michel & Charlton, 2018). For example, biased agonists of the GPCR μ opioid receptor have been success-
ful in treating pain with less negative side effects during phase II clinical trials (Viscusi et al., 2016). Identifying and
understanding the mechanism of biased agonists for other receptors such as RTKs could create new avenues for disease
treatment.

3.3 | Chemical signaling dysfunction in disease

In healthy cells, chemical communication is regulated, but dysregulation of receptors can cause diseases such as can-
cers, autoimmune disorders, and skeletal dysplasias (McDonell et al., 2015; Saraon et al., 2021; Wu et al., 2018). In
many cancers, EGFR and HER2 are frequently hyperactivated as a result of genetic alterations (Berger et al., 1988;
Shigematsu & Gazdar, 2006; Slamon et al., 1987). Specifically, point mutations and exon deletions can constitutively
activate the EGFR kinase domain leading to hyperphosphorylation, common in nonsmall cell lung cancer (Lynch
et al., 2004). Gene amplifications of HER2 result in receptor overexpression in adenocarcinomas, breast, and other
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cancers (Gordon et al., 2013; Press et al., 1997). Dysregulated EGFR localization can lead to the formation of large,
punctate EGFR aggregates at the membrane (Y. Wang et al., 2014). Many of these changes create an EGFR capable of
signaling in the absence of ligand (Valley et al., 2015). Consequently, the EGFR pathway constitutively stimulates cell
proliferation and survival, leading to increased tumorigenesis and cancer progression.

4 | CELL ADHESION DELIVERS SPATIAL INFORMATION

The local tissue microenvironment consists of different cell types as well as secreted extracellular matrix (ECM)
molecules (Karamanos et al., 2021). Adhesion receptors provide cells with information about their spatial context
within the tissue by recognizing specific receptors on other cells or specific molecules in the ECM. Immunoglobulin
domain-containing receptors, cadherins, and selectins are receptors that mediate adhesion between two cells, while
integrins, hyaluronan receptors, and sarcoglycans are receptors that mediate adhesion with the extracellular matrix
(Juliano, 2002; Karamanos et al., 2021; Tarakci & Berger, 2016). These cell adhesion receptors enable cells to acquire
information about the microenvironment including the types of neighboring cells and the local ECM composition. Cell
adhesion receptors often directly or indirectly connect to the internal cytoskeleton, serving as an anchor to the external
environment and helping to physically integrate the tissue. Cell adhesion receptors can also initiate signaling cascades,
often through the recruitment and activation of kinases and Rho GTPases, to regulate cell survival, metabolism, cell
cycle progression, cell migration, and differentiation (Juliano, 2002).

Integrins are heterodimers composed of an α and β subunit, and eight β subunits can combine with 18 α subunits to
form 24 distinct integrin heterodimers in humans (Hynes, 2002). The large ectodomain domain of integrins determines
ligand specificity and the intracellular domains bind to cytoplasmic adaptor proteins (I. D. Campbell &
Humphries, 2011; Z. Sun et al., 2019). Similar to RTKs, integrin heterodimers undergo complex conformational changes
during their activation and adopt several distinct conformations (Chastney et al., 2021; Luo et al., 2007; Springer &
Dustin, 2012; Takagi et al., 2002; Wen et al., 2022).

4.1 | Adaptor proteins coordinate receptor signaling to different pathways

Unlike RTKs, cell adhesion receptors contain no intrinsic catalytic activity, and downstream signaling is dependent
upon the assembly of receptors with cytoplasmic adaptor proteins and signaling molecules (Chastney et al., 2021). For
example, upon activation integrins undergo clustering and supramolecular assembly to form micron-sized integrin
adhesion complexes, such as focal adhesions (Case & Waterman, 2015), podosomes (Weber et al., 2022),
hemidesmosomes (te Molder et al., 2021), and costameres (Cutroneo et al., 2012). The composition and morphology of
integrin complexes can vary depending on the cell type and physiological context.

Integrins primarily signal through cytoplasmic tyrosine kinases and Rho-family GTPases. Focal adhesion kinase
(FAK) and c-Src are non-RTKs that phosphorylate substrates downstream of integrin activation (Chastney et al., 2021).
FAK is targeted to focal adhesions via its C-terminal domain (Hildebrand et al., 1993). After focal adhesion localization,
FAK undergoes autophosphorylation to create a high-affinity binding site for the SH2 domain of Src family kinases
(Schlaepfer et al., 1999; Tapial Martínez et al., 2020). Together, the FAK-Src complex phosphorylates multiple substrates
including paxillin and p130Cas (Roy et al., 2002). Activation of the FAK-Src complex can lead to downstream activation
of PI3K/Akt and Erk/MAPK pathways (Schlaepfer et al., 1999).

Cell adhesion receptors also signal through the recruitment and activation of Rho-family GTPases, molecular
switches that are activated through the binding of GTP and inactivated by GTP hydrolysis (Parri &
Chiarugi, 2010). GEFs catalyze the exchange of GDP to GTP to activate the GTPase activity. Integrin adhesion
complexes can recruit specific GEFs to activate either Rho, Rac, or Cdc42 GTPases. βPix is a GEF for Rac1 and is
localized within newly formed focal adhesions to promote protrusion and focal adhesion turnover (Kuo et al., 2011). In
contrast, the Rho GEFs LARG and GEF-H1 are recruited to growing focal adhesions to promote cytoskeletal remo-
deling (Guilluy et al., 2014).

Recruitment of adaptor proteins to adhesion receptors can also inhibit signaling. For example, filamin binds to the
cytoplasmic domain of integrin, maintaining integrin in an inactive conformation (Liu et al., 2015). Thus, filamin bind-
ing inhibits integrins and decreases cell migration (Calderwood et al., 2001).
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4.2 | Receptors can signal bidirectionally across the plasma membrane

Transmembrane receptors often gather information from the external environment to induce changes in intracellular
behavior. However, intracellular information can also be propagated through receptors to the extracellular space, which
can facilitate communication between cells. Integrins are a well-studied example of receptors that signal bidirectionally
across the plasma membrane (Hynes, 2002; Minsoo et al., 2003; Wen et al., 2022). The high affinity, active conformation
of integrin can be favored by the binding of cytoplasmic proteins, such as talin, to the β-integrin tail (“inside-out” acti-
vation) or by the binding of the integrin ectodomain to extracellular ligand (“outside-in” activation; Takagi et al., 2002).
Thus, both internal and external signals can initiate integrin activation.

4.3 | Cell adhesion dysfunction in disease

Since cell adhesion receptors are essential for the proper formation and function of all tissues and organs, dysregulated
cell adhesion is a common cause for many human diseases. Dysregulated cell adhesion in the immune system can lead
to leukocyte adhesion deficiency, chronic inflammation, and autoimmune disorders (Dustin, 2019). Impaired cell–cell
adhesion can disrupt epithelial barriers and contribute to blistering disease and inflammatory bowel disease
(Hammers & Stanley, 2016; Marchiando et al., 2010). Many pathogens, including Vibrio cholerae and Escherichia coli,
disrupt cell–cell adhesion in the intestinal epithelia causing severe gastrointestinal symptoms (Marchiando et al., 2010).
The dysregulation of cell adhesion is also common in many cancers (Dustin, 2019). The epithelial-to-mesenchymal
transition (EMT) occurs when epithelial tissues lose apical-basal polarity and organized cell–cell adhesion, and EMT is
a common step in cancer progression (Aiello & Kang, 2019). During EMT, solid tumors become more malignant and
metastatic, and preventing EMT is one strategy for treating drug-resistant cancers (Shibue & Weinberg, 2017).

5 | CELLS SENSE AND RESPOND TO MECHANICAL INFORMATION

Mechanical forces and the material properties of the environment have profound effects on animals at the whole organ-
ism, organ, tissue, and cellular levels, including the behavior of individual cells during development, differentiation,
and adult physiology. At the tissue and organ level, lungs expand and contract stretching the epithelial tissue, the heart
pumps blood creating shear stress against endothelial cells, and increased weight-bearing during physical activity stim-
ulates bone remodeling (Ramkhelawon et al., 2009). At the cellular level, the stiffness and surface topology of a stem
cell's environment can direct its differentiation and control the fates of its progeny (Vining & Mooney, 2017).
Mechanotransduction is the molecular process by which cells sense and respond to mechanical signals in their environ-
ment. Cells use many pathways to sense mechanical information. Mechanosensitive ion channels, such as Piezo1,
change conformation in response to mechanical stimuli to initiate Ca2+-dependent signaling cascades (Coste
et al., 2010). Several GPCRs can also be activated by mechanical stretch. For example, mechanical stretch is sufficient
to activate angiotensin II type 1 receptors (AT1R), leading to G protein release, ERK activation, and cardiac hypertro-
phy (Zou et al., 2004). Mechanical forces can also be directly transmitted across adhesion receptors, such as integrins
and cadherins, promoting the recruitment of intracellular molecules to adhesion complexes (Case & Waterman, 2015).
For example, the composition of focal adhesions changes dramatically in response to increased mechanical forces, and
integrin-dependent signaling is sensitive to mechanical cues such as substrate stiffness and actomyosin contractility
(Schiller et al., 2013). Mechanical forces can also be sensed directly by the cytoskeleton. The actin filament helical struc-
ture changes under tension, and many proteins recognize and bind specifically to tensed actin filaments (Mei
et al., 2020; Sakao & Tatsumi, 2011; X. Sun et al., 2020). Changes in actin filament tension can also be relayed through
the transcription factors Yap/Taz to promote cell proliferation (Dupont et al., 2011). A variety of external mechanical
signals, such as shear stress, stretch, cell–cell contact, and ECM stiffness, cause actin cytoskeleton remodeling, leading
to dephosphorylation and nuclear translocation of Yap/Taz to activate transcription (Dupont et al., 2011; Wada
et al., 2011). External forces can influence microtubules and can dictate the position and orientation of the mitotic spin-
dle (Brangwynne et al., 2007; Fink et al., 2011). The cytoskeleton is also physically connected to the nuclear lamins by
the linker of nucleoskeleton and cytoskeleton (LINC) complex, allowing external mechanical forces to be propagated to
the nucleus to regulate chromosome organization and transcription (Uhler & Shivashankar, 2017). Moreover, the LINC
complex feeds back into regulating overall cellular mechanics by altering actin dynamics through Rho GTPase activity
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(Thakar et al., 2017). Altogether, the cell contains many avenues to sense and be influenced by the surrounding
mechanical environment—a critical component for spatially complex multicellular organisms.

5.1 | Forces can directly alter the conformation of proteins

At the molecular level, proteins convert force into biochemical activity by undergoing force-dependent conformational
changes which can create new binding sites, alter binding affinity, or directly change molecular activity. Mechanical
stretching of the focal adhesion adaptor protein talin unfolds rod domains to reveal “cryptic” binding sites for the pro-
tein vinculin (del Rio et al., 2009). Talin contains 13 rod domains that reversibly unfold under different magnitudes of
force, leading to mechanosensitive recruitment of vinculin to focal adhesions (Yao et al., 2016). At adherens junctions,
the adaptor protein αE-catenin connects cadherin receptors to the actin cytoskeleton, and the cadherin-actin interaction
strengthens with increasing force due to a force-induced conformational change in the αE-catenin actin-binding
domain (Buckley et al., 2014; A. Wang et al., 2022). Membrane tension is sufficient to induce a conformational change
in Piezo1 that activates its ion channel activity (Lin et al., 2019; Syeda et al., 2016).

5.2 | Mechanotransduction in disease

Abnormal mechanotransduction contributes to many human diseases including asthma, heart failure, osteoporosis,
and cancer (Ingber, 2003). In disease, changes in mechanotransduction are often coupled with complex changes in
chemical or spatial signal transduction. Disrupted mechanotransduction can lead to different symptoms depending
on the tissue context. Mutations in mechanosensitive Piezo channels can lead to diseases such as lymphatic dyspla-
sia, anemia, muscular atrophy, and cardiovascular disease (Alper, 2017). Dysregulated integrin-dependent
mechanotransduction contributes to the progression of diseases such as osteoporosis and cancer (Z. Sun
et al., 2016). Dysregulated mechanotransduction in sensory hair cells is a common cause of deafness (Caprara &
Peng, 2022).

6 | CROSSTALK: MERGING SIGNALS TO DEVELOP A FULL PICTURE OF
THE SURROUNDING ENVIRONMENT

Signaling crosstalk occurs when one pathway's activity tunes that of another. Signaling crosstalk is prevalent in human
cells, and crosstalk has enabled multicellular organisms to develop specialized cell types and organ systems that rely on
intercellular communication (Rowland et al., 2017). Rather than evolve a new signaling pathway de novo, different cell
types can use the same receptors and signaling pathways to achieve unique outcomes. In response to EGFR activation,
keratinocytes will activate pro-survival pathways upon UV damage, whereas hepatocytes induce proliferation and liver
regeneration upon injury (Natarajan et al., 2007; Peus et al., 2000). Each cell type expresses a unique combination of
receptors and exists within a specific microenvironment, and cross-talk enables these differences to influence signaling.
Crosstalk is a broad term defined by the interdependence of two signaling pathways. Although crosstalk is frequently
observed across all forms of signaling, it is not always well understood at a molecular level. Integrin and EGFR
crosstalk has been extensively studied and provides insight into some of the distinct molecular mechanisms that can
drive signaling crosstalk shared across all pathways (Figure 3). Additionally, crosstalk occurs between a variety of recep-
tor types including GPCRs and other RTKs. These relationships have been reviewed elsewhere (Di Liberto et al., 2019;
Kilpatrick & Hill, 2021; Z. Wang, 2016). However, we highlight a few examples below to illustrate general crosstalk
mechanisms.

6.1 | Shared ligand binding

Many receptors are capable of binding to multiple ligands in the extracellular space with varying affinities. In other
words, cells do not always evolve a unique receptor for every existing ligand. One mechanism by which pathway A can
influence pathway B is by the binding of both receptors to the same ligand. Several types of integrins can also bind to
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different growth factors (Munger et al., 1999; Saegusa et al., 2009). For example, integrin αvβ3 binding to the ligand
FGF is important for propagating FGF signaling in promoting DNA synthesis and cell proliferation (Mori et al., 2008).
GPCRs from the same GPCR families and, less frequently, different families can bind the same ligands due to similar
structure and electrostatic properties of the ligand binding pockets (Dankwah et al., 2022). Not only does a receptor
binding to a different ligand propagate different responses, but it can also create competition between receptors for a
finite pool of ligands (Antebi et al., 2017; Szil�agyi et al., 2022).

6.2 | Steric hindrance

The spatial separation of receptors into distinct regions of the membrane can influence their signaling and crosstalk.
Large and bulky receptors can impose steric restraints on the size of molecules that can easily access certain receptor
clusters. For example, bulky glycoproteins sterically restrict integrin–ECM interactions, leading to increased integrin

FIGURE 3 Conceptual mechanisms of crosstalk between signaling pathways. These include shared/co-binding ligand (1), steric

hindrance (not illustrated) (2), localized receptor complexes (3), cross-regulation (4), converging on the same downstream target through

negative convergence (5) or positive convergence (6), and pathway component availability through transcription/translation, recycling, and

degradation (7). Created with Biorender.com.
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clustering and focal adhesion assembly through a physical kinetic trap (Paszek et al., 2009, 2014). Therefore, the
upregulated expression of bulky glycoproteins in metastatic human tumor cells leads to an increase in integrin adhesion
and signaling (Paszek et al., 2014). In T-cells, the receptor protein tyrosine phosphatases CD45 and CD148 have large,
bulky extracellular domains, while the T-cell receptor (TCR) has a small extracellular domain. Thus, CD45 is excluded
from TCR microclusters, leading to increased phosphorylation of the TCR and downstream activation of Lck kinase
(Choudhuri et al., 2005; Irles et al., 2003). In mast cells, the large cytoplasmic domain of clustered immunoglobulin
E-receptors (FcεRI) can reduce the recruitment of cytoplasmic PTPα phosphatase to suppress dephosphorylation of the
receptor (Nirmalya et al., 2021). Thus, steric limitations imposed by both the extracellular and intracellular domains of
receptors can potentially influence crosstalk and downstream signaling.

6.3 | Localized complexes

Another mechanism of signaling crosstalk is through the localization of two different receptors within the same region of
the membrane. Receptor A can recruit receptor B to activate it, sequester it, or expose it to an alternative pool of adaptor
proteins. Thus, recruitment of receptors to distinct membrane locations can create unique signaling platforms. Localized
receptors can be physically linked through hetero-oligomerization or be sequestered in the same membrane domain. The
proximity of two different receptors can influence their respective activation, adaptor protein recruitment, and signaling
outcomes. Receptors can co-localize through direct, physical interactions between receptor A and receptor B. For example,
the GPCR adenosine A2A receptor and FGFR directly interact via their intracellular domains. When these two receptors
associate, co-activation of both receptors, but not individual activation of either receptor alone, activates the MAPK path-
way to trigger differentiation and morphogenesis in neuronal cells (Flajolet et al., 2008). Receptors can also co-localize
through direct interactions with downstream adaptor proteins. For example, EGFR and integrins can complex together
through FAK–EGFR interactions (Moro et al., 2002; Sieg et al., 2000; Tice et al., 1999). These interactions can create differ-
ent consequences for focal adhesion dynamics and shift cell mechanics from adhesive to contractile (Chan et al., 2021).
Membrane sub-domains can influence receptor location and interactions (Duncan et al., 2020; Hang et al., 2015; Mineo
et al., 1996; Pike, 2003). For example, EGF stimulation leads to changes in clathrin lattice organization at the plasma mem-
brane, which leads to sequestration of EGFR and β5-integrin into a signaling scaffold (Alfonzo-Méndez et al., 2022).

Clustering of receptors may also function as a crosstalk mechanism to couple and tune cellular response to mechanical
stimuli. The E-cadherin receptor CDH1 and EGFR form a complex consisting of two E-cadherins and one EGFR
(Brendan et al., 2022). EGFR signaling becomes connected to mechanical tension through E-cadherin, where increased
tension disrupts the heteroreceptor connection and releases EGFR to become activated and signal (Brendan et al., 2022).

6.4 | Cross-regulation

Another mechanism of crosstalk between different pathways is through cross-regulation, whereby components of path-
way A can positively or negatively impact pathway B through physically binding or modifying components. For exam-
ple, activated kinases of one pathway can phosphorylate residues of another. Activated αvβ3 and β1 integrin triggers
c-Src to phosphorylate EGFR (Moro et al., 2002). This has been proposed to alter EGFR signaling in the absence of EGF
ligand through lateral signal propagation (Kansra et al., 2005; Shan et al., 2012). Furthermore, cross-regulation can also
be observed downstream of receptors. EGFR signaling through Erk and Rho can lead to activation of filamin A to main-
tain integrin in an inactive conformation and inhibit integrin signaling (Vial & McKeown-Longo, 2012). EGF-mediated
EGFR activation also increases integrin tension during cell spreading and promotes focal adhesion maturation poten-
tially through RhoA and Rac1 activation (Rao et al., 2020). In vascular smooth muscle cells, the ligand Angiotensin II
binds the GPCR AT1R, triggering NADPH oxidase-dependent generation of reactive oxygen species (ROS; Frank
et al., 2001). This leads to an increase in EGFR phosphorylation and downstream ERK activation, likely through
ROS-dependent inhibition of phosphatase activity.

6.5 | Convergence on downstream targets

Independent receptors and the pathways they activate can converge on shared downstream targets. Convergence
can be positive (i.e., coherent feed-forward) or negative (i.e., incoherent feed-forward). In positive convergence,
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pathways A and B both act on the same downstream target resulting in an additive response. In negative conver-
gence, pathways A and B act on the same downstream target creating an antagonistic response through competition.
Several GPCRs and RTKs can positively converge to activate shared downstream targets such as the PI3K and MAPK
pathways (Blaukat et al., 2000; Dizeyi et al., 2011; Suire et al., 2012). For example, serotonin binding to GPCRs in
endothelial cells can activate PI3K/Akt signaling to a similar extent as VEGF binding to the VEGFR (Zamani &
Qu, 2012).

Positive convergence also occurs between integrin and EGFR signaling pathways. When FAK and EGFR associate
with the same downstream adaptor proteins Grb2 and SOS, they can synergistically activate MAPK and Erk (Miyamoto
et al., 1996; Schlaepfer et al., 1994). Conversely, EGFR and integrins have the potential to negatively converge on pho-
sphoinositide signaling. EGFR activates PI3K which phosphorylates and converts phosphatidylinositol(4,5)
bisphosphate (PI(4,5)P2) to phosphatidylinositol(3,4,5)trisphosphate (PI(3,4,5)P3) (Czech, 2000; Kiyatkin et al., 2006).
However, FAK activates phosphatase and tensin homolog (PTEN) which dephosphorylates (PI(3,4,5)P3) to generate
PIP2 (Tzenaki et al., 2015). Whether these two pathways result in negative convergence on the downstream pho-
sphoinositide targets remains unexplored.

6.6 | Pathway component availability

Finally, a mechanism by which one pathway can influence another is through regulating the availability of their com-
ponents. Pathway component availability can be controlled by endocytosis of receptors, transcription or translation of
pathway components, and protein degradation. Recent findings suggest integrin-containing clathrin lattices sequester
EGFR, keeping a subpopulation at the membrane rather than being endocytosed and recycled (Alfonzo-Méndez
et al., 2022). The availability of receptor copy number can impact different receptors that compete for the same sub-
strates. For example, EGFR and EphA2 receptors display cell type-specific variation in expression levels which contrib-
utes to their ability to compete for Grb2 and SOS binding (Oh et al., 2022). Pathway A can also alter the availability of
ligand for pathway B. For example, the GPCR angiotensin II receptor activates ADAM proteases to trigger EGF ligand
release (Eguchi et al., 2001; Thomas et al., 2002). Therefore, GPCR activity can control ligand availability for EGFR
activation.

7 | CONTRIBUTION OF RECEPTOR CROSSTALK DYSREGULATION IN
DISEASE

Crosstalk between signaling pathways is common in human cells and helps provide the cell with a comprehensive pic-
ture of its surroundings. These described mechanisms create flexibility in a cell's response to its environment allowing
for adaptation. However, crosstalk between signaling pathways can also contribute to the progression of diseases such
as chronic lung disease, neuroinflammatory disease, and cancer (Qu et al., 2019; Z. Sun et al., 2022). In fact, crosstalk
has been identified as a major avenue for both disease progression and therapy resistance in cancer (Hassanein
et al., 2021; Lai et al., 2018). Unfortunately, nearly every type of cancer benefits from receptor signaling crosstalk as a
mechanism to amplify uncontrolled cellular proliferation, adhesion-independent survival, and metastatic invasion and
migration. Many receptors and their downstream targets are considered oncogenes. For example, EGFR-family of
receptors and their downstream targets Ras, Raf, Src, and Lck are factors that promote oncogenesis (Miller &
Miller, 2012). Integrins and RTKs can further exacerbate tumorigenesis (Javadi et al., 2020). Moreover, integrin-EGFR
crosstalk in cancers contributes to signaling dysregulation and disease progression through all the mechanisms
described above. Integrin activation promotes EGFR pathway component transcriptional upregulation and EGFR endo-
cytosis and turnover (Carpenter et al., 2015; Morello et al., 2011). Additionally, Src-mediated phosphorylation of EGFR
in breast cancer cells enhances DNA synthesis of tumor cells (Biscardi et al., 1999). Interestingly, crosstalk between
integrins and EGFR can not only activate EGFR itself, but also direct alternative pathway activation downstream of
EGFR. Cross-linking of α6β4-integrin can cluster EGFR to promote Rho activation rather than canonical Akt or Erk
activation in triple-negative breast carcinoma cells (Gilcrease et al., 2009). Conversely, in other disease contexts,
integrin activation can negatively regulate EGFR activity. Paradoxically, in colorectal cancer cells, integrin α5β1 cluster-
ing decreases EGFR and HGFR phosphorylation and Akt signaling, instead activating GSK3 and speculative
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endocytosis pathways (Starchenko et al., 2021). This illustrates the complexity of receptor crosstalk directing alternative
downstream signaling.

Targeted therapy of signaling pathways upregulated in cancers has been met with some success; however, many
challenges remain. In particular, the treatment of lung adenocarcinoma and breast cancers with RTK and MAPK inhib-
itors often leads to therapy resistance and disease recurrence (Alexander & Wang, 2015; Kun et al., 2021). Several mech-
anisms of drug resistance are driven by additional acquired mutations that overcome inhibition. However, resistance
can also be achieved through pathway crosstalk which bypasses inhibition of one receptor to allow downstream activa-
tion. For example, EGFR and β1-integrin crosstalk improves cancer cell survival upon radiation (Vehlow &
Cordes, 2022). Moreover, shared downstream effectors of RTKs such as components of the MAPK and PI3K pathways
can be activated by a variety of upstream receptors. This, in turn, presents difficulty in disease treatment. For example,
KRAS-mutated colorectal cancer cells can resist MAPK/MEK inhibition by activating PI3K through other RTKs, includ-
ing HER2, HER3, and IGF1R (Vitiello et al., 2019). While navigating drug resistance mechanisms in cancers remains a
challenge, efforts to identify activated crosstalk pathways during drug resistance and alternative combinatorial thera-
peutic approaches are promising (Jaeger et al., 2017). Future studies identifying combinatorial approaches that target
crosstalk mechanisms in diseases such as cancer will be important in overcoming barriers to drug resistance.

8 | CONCLUDING REMARKS

Cells within an organism experience a multifaceted environment and are exposed to chemical, spatial, and physical
inputs simultaneously. The current understanding of how cells sense their external environment is extensive, yet
incomplete. Open questions in the field include the basis for cell type-specific responses, how the environment impacts
signaling outputs, and how multiple signaling pathways and receptors are integrated to determine the cellular
response.

Recently, research in the signal transduction field has identified phase separation as another potential mechanism
to regulate receptor organization and activation (Case, Ditlev, & Rosen, 2019). Phase separation occurs when it is ener-
getically favorable for a solution to demix, and phase separation contributes to the formation of biomolecular conden-
sates throughout the cell (Yongdae & Brangwynne, 2017). At the plasma membrane, phase separation can promote
clustering of receptors, including RTKs, integrins, the cell-adhesion receptor nephrin, and the linker for activation of
T-cell (LAT) receptor (Banjade & Rosen, 2014; Case et al., 2022; Case, Ditlev, & Rosen, 2019; Mayer & Yu, 2018; Su
Xiaolei et al., 2016; Lin et al., 2022a; Lin et al., 2022b). In some cases, phase separation of receptors has been observed
to enhance downstream signaling (Case, Zhang, et al., 2019; W. Y. C. Huang et al., 2019). However, additional studies
are needed to understand the potential functional consequences of phase separation for signaling and crosstalk in cells.

Crosstalk of signaling pathways is further complicated by the overlapping use of adaptor proteins and downstream
effectors by multiple pathways. For example, Grb2 can bind to Gab1, SOS, RTKs, PI3K, and Cbl through its SH2 and
SH3 domains (Buday et al., 1996; Egan et al., 1993; McDonald et al., 2012). We do not fully understand how a finite pool
of adaptor protein, such as Grb2, is partitioned across all receptors in a cell at any given moment. Spatiotemporal track-
ing of individual adaptor proteins in live cells and tissues exposed to intricate ligand environments is an approach to
studying this problem (Freeman et al., 2012; Wintgens et al., 2019). Finally, how cells sense and integrate information
from their environment changes during disease progression, and it is important to understand how crosstalk mecha-
nisms change between healthy and diseased cells and tissue.
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